HARC Synthesis Workshop 5 October 2007

List of Invited Projects (Tentative)

International Polar Year Awards					
Award	Title	NSF	PI	Contact	
Number		Organization			
0632346	ELOKA: Exchange of	ARC/AON	Gearheard, Shari	sharig@qiniq.com	
	Local Observations and	Implementation	(UC Boulder).		
	Knowledge of the Arctic				
This projec	t addresses a gap in data man	agement for Arctic r	esearch - the urgent ne	ed for effective and	
appropriate	means of recording storing	and managing data a	and information being	collected in Arctic	

s of recording, storing, and managing data and information being collected in Arctic communities. Local and traditional knowledge (LTK) research and community-based monitoring efforts are on the rise, but to date there has been very little done to coordinate these projects or the information they have collected. The Exchange for Local Observations and Knowledge of the Arctic (ELOKA) seeks to fill this gap by supporting community-based research with accessible and useable data management that can allow findings to be shared more broadly, while still keeping control of data in local hands. Specifically, ELOKA proposes to provide data management and user support to facilitate the collection, preservation, exchange, and use of local observations and knowledge of the Arctic. To build ELOKA, researchers, community organizations, data management specialists, web specialists, and Arctic residents will work together. ELOKA will be developed in collaboration with four pilot projects representing different regions and cultures, different priorities and goals, different topics and locations of study, and different types of data. All of the pilot projects share a focus on community-based research in the North and a common interest and need for data management and networking capability. Working closely with these projects and using their expertise, experiences, and data, we will build the core of ELOKA which includes: (a) a secure place for existing and future LTK and community-based projects to store their data in a way that is searchable and accessible to a diverse community of users while assuring protection of sensitive data; (b) a portal to finding data, information, and resources about Arctic LTK and communitybased projects; and (c) developing best practices and standards in data stewardship for community-based observations.

Award	Title	NSF Organization	PI	Contact
Number				
0638408	IPY Collaborative	OPP/Arctic Sciences	Kruse, Jack	<u>afjak@uaa.alaska.edu</u>
	Research: Is the Arctic	AON Implementation	u (UA	
	Human Environment		Anchorage)	
	Moving to a New State			

This project is part of the Arctic Observation Network, initiated as part of the International Polar Year, and will implement phase one human dimension priorities of the Study of Arctic Environmental Change (SEARCH) program. These priorities are directed toward the goal of identifying knowledge that will help people respond to environmental change. The priorities include: (1) developing an integrated pan-Arctic human dimension observation system based on existing data; (2) developing stakeholder networks to identify relevant observations and predictions, and to help understand the dynamics of the Arctic system; and, (3) develop and apply models to a pan-Arctic database to advance our understanding of environmental change and to identify data gaps that could be filled in a Phase Two human-dimensions observation system. The project will focus on four arenas likely to involve climate-human interactions: marine mammal hunting; oil, gas, and mineral development; tourism; and fisheries. A fifth project focus is on indicators of social outcomes of human interactions with environmental change. As part of the Arctic Observation Network, the project will be designed to foster integrated analysis across the physical, natural, and social sciences.

Award	Title	NSF Organization	PI	Contact
Number				
0638413	IPY Collaborative	OPP/Arctic	Hamilton, Lawrence	lawrence.hamilton
	Research: Is the Arctic	Sciences	(U New Hampshire)	<u>@unh.edu</u>
	Human Environment	(Arctic Social		
	Moving to a New State	Sciences)		

This project is part of the Arctic Observation Network, initiated as part of the International Polar Year, and will implement phase one human dimension priorities of the Study of Arctic Environmental Change (SEARCH) program. These priorities are directed toward the goal of identifying knowledge that will help people respond to environmental change. The priorities include: (1) developing an integrated pan-Arctic human dimension observation system based on existing data; (2) developing stakeholder networks to identify relevant observations and predictions, and to help understand the dynamics of the Arctic system; and, (3) develop and apply models to a pan-Arctic database to advance our understanding of environmental change and to identify data gaps that could be filled in a Phase Two human-dimensions observation system. The project will focus on four arenas likely to involve climate-human interactions: marine mammal hunting; oil, gas, and mineral development; tourism; and fisheries. A fifth project focus is on indicators of social outcomes of human interactions with environmental change. As part of the Arctic Observation Network, the project will be designed to foster integrated analysis across the physical, natural, and social sciences.

Award	Title	NSF	PI	Contact
Number		Organization		
0634079	International Polar Year	ARC/AON	Gofman,	victoriag@alaska.net
	Collaborative Project:	Implementation	Victoria	
	Bering Sea Sub-Network:		(Aleut	
	International Community-		International	
	Based Observation Alliance		Association)	
	for Arctic Observing			
	Network (BSSN)			

Indigenous peoples around the economically important Bering Sea region are launching a project that will monitor environmental changes in the region. The project will involve Native organizations in western Alaska and in the Russian northeast. The Bering Sea, one of the most productive seas in the world, which includes globally important habitats for many biological resources, is now undergoing farreaching environmental changes including climate change that alarm scientists, coastal residents and others from around the world. The region is of vital economic importance to both the US and Russia. The health, economic well-being, and ways of life of indigenous and non-indigenous peoples in the region are connected to the Bering Sea and its natural resources. The socioeconomic development of coastal villages along the Bering Sea, on both the Russian and United States sides, is dependent on maintaining ecologically sustainable conditions in the region. "This monitoring project is critical to the future of the region and of the peoples who live there," says Michael Zacharof, the president of the Aleut International Association, which is leading the project. "People in our communities notice even the slightest changes in nature but they do not have resources and tools to document them properly and to conduct research. In the Native communities, there are no "field seasons". We are in the field all year around and we think it is necessary to bring research, monitoring and observation capabilities to the local communities. By involving the people who live there, we can do this cost-effectively." The Bering Sea Sub-Network: International Community-Based Environmental Observation Alliance for Arctic Observing Network (BSSN), endorsed by IPY Joint Committee, will involve six local indigenous communities, three each in the U.S. and Russia, to monitor and share the changes they observe. Changes could include the shift of southern species north, changes in distribution and abundance of fish and other temperature-sensitive species, changes in ice patterns, and weather observations. Observations will be collected using surveying methods across the network based on standard protocols. BSSN will address the questions of: 1) historical and present distribution and properties of economic and subsistence important species as derived from collective indigenous and traditional knowledge; 2) types of major variables and indicators that could be correlated with western science to develop predictable models based on indigenous and traditional knowledge; and 3) spatial and temporal convergence and divergence of community-derived and western science data. This project will assess large scale environmental changes in the Arctic by

looking at both the physical and human dimensions of change and its impact. Success of this project will leave a legacy not only for IPY but also for a broad community of arctic residents striving to organize an observing system that is a valid partner in pan-arctic observations.

Synthesis of Arctic System Science (SASS1)					
Award	Title	NSF	PI	Contact	
Number		Organization			
0531354	Humans &	OPP/ARCSS	Lammers, Richard	richard.lammers@unh.edu	
	Hydrology at High		(U New		
	Latitudes		Hampshire)		

Data for the dynamics, uses and values of freshwater in the Arctic are rapidly accumulating. However, it is currently unknown which regions of the pan-Arctic are most vulnerable to future changes. In order to begin to address the future change to freshwater availability on a pan-arctic scale, this team will use a system of arctic typologies to enable the integration of biophysical data with socio-cultural data produced regionally, such as demographics and water values. They will use mature data sets to study the strategic transformations of the high latitude water cycle. Recent studies suggest that climate change will have a significant impact on arctic hydrology. Changes in the hydrologic cycle will affect both the presence of surface water and the thermal balance in soil. While preliminary evidence suggests a changing climate will have a significant impact on the hydrologic cycle in arctic regions, very little evidence is available to predict how the quantity of freshwater used by people is likely to change. Even less is understood about how hydrologic changes will affect the sustainability and culture of arctic residents. The overall objective of this research is to use a wide array of existing data sets in a synthesis effort to describe the vital role of freshwater in the lives of people in the pan-Arctic, how it has changed in the recent past, and how it is likely to change in the future. The group will use a model to predict climate-induced changes in the hydrologic cycle and the resultant water stress on people at these high latitudes. Water-related stress will involve all of the key agents of change: climate change, land use/cover change, and water management by humans. They seek to address water stress in the pan-Arctic by testing hypotheses related to the 1) dominant types of hydrologic change at local, regional and continental scales, 2) the interplay between humans and hydrology over the pan-Arctic, and 3) future prognostication of the high latitude water cycle under changing climate and populations. An important component of this research is an attempt to bridge the gap between large, continental scale processes with those processes acting at local scales.

0531148	Humans & Hydrology	OPP/ARCSS	White, Daniel	ffdmw@uaf.edu
	at High Latitudes		(UA Fairbanks)	

Data for the dynamics, uses and values of freshwater in the Arctic are rapidly accumulating. However, it is currently unknown which regions of the pan-Arctic are most vulnerable to future changes. In order to begin to address the future change to freshwater availability on a pan-arctic scale, this team will use a system of arctic typologies to enable the integration of biophysical data with socio-cultural data produced regionally, such as demographics and water values. They will use mature data sets to study the strategic transformations of the high latitude water cycle. Recent studies suggest that climate change will have a significant impact on arctic hydrology. Changes in the hydrologic cycle will affect both the presence of surface water and the thermal balance in soil. While preliminary evidence suggests a changing climate will have a significant impact on the hydrologic cycle in arctic regions, very little evidence is available to predict how the quantity of freshwater used by people is likely to change. Even less is understood about how hydrologic changes will affect the sustainability and culture of arctic residents. The overall objective of this research is to use a wide array of existing data sets in a synthesis effort to describe the vital role of freshwater in the lives of people in the pan-Arctic, how it has changed in the recent past, and how it is likely to change in the future. The group will use a model to predict climate-induced changes in the hydrologic cycle and the resultant water stress on people at these high latitudes. Water-related stress will involve all of the key agents of change: climate change, land use/cover change, and water management by humans. They seek to address water stress in the pan-Arctic by testing hypotheses related to the 1) dominant types of hydrologic change at local, regional and continental scales, 2) the interplay between

humans and hydrology over the pan-Arctic, and 3) future prognostication of the high latitude water cycle under changing climate and populations. An important component of this research is an attempt to bridge the gap between large, continental scale processes with those processes acting at local scales.

Award Number	Title	NSF Organization	PI	Contact
0531200	Heterogeneity and	OPP/ARCSS	Kofinas, Gary	gary.kofinas@uaf.edu
	Rangifer Systems: A		(UA Failbailks)	
	Circumpolar Social-			
	Ecological Synthesis			

The Human-Rangifer System is defined at the regional scale as the set of ecological-social processes underlying the human use of Rangifer. These processes include bio-physical interactions, socio-economic dynamics, the role of social institutions and organizations in shaping human adaptation. Resilience in these systems is the amount of disturbance to individual or multiple components that can be accommodated without change to alternative domains. The overarching goal of this project is to improve understanding of the relative resilience and adaptability of regional Human-Rangifer Systems to forces of global change, and to derive generalized propositions about their functional properties as critical aspects of the Arctic System. This study of resilience goes beyond the regional analyses of Human-Rangifer Systems considered in past studies, to address the heterogeneity present in the drivers and responses found across the circumpolar North. This circum-arctic synthesis undertakes a comparative retrospective analysis of six regional case studies in North America and Russia. The project develops a conceptual framework for measuring and assessing resilience in three components of the Human-Rangifer System: ecological processes, socio-economic processes, and institutional processes. In addition, simple synthesis models will be developed and simulated to examine resilience in each subcomponent process interactions, as well as in the coupled social-ecological system. This project is the first to provide a comprehensive synthesis of heterogeneity and resilience of Human-Rangifer Systems, and the first such project to predict means of accommodating changes in drivers and enhancing resilience of Human-Rangifer systems in the circumpolar North.

Synthesis of Arctic System Science (SASS II)					
Award	Title	NSF	PI	Contact	
Number		Organization			
0629338	Synthesis of Sea Ice,	OPP/ARCSS	Ogilvie, Astrid	astrid.ogilivie@colorado.edu	
	Climate, and Human		(UColorado)		
	Systems in the Arctic &				
	Subarctic				

The SYNICE project seeks to improve the understanding of pan-Arctic and North Atlantic climate and human systems through the integration and syntheses of several sea-ice data sets together with information from the physical and social sciences. The project is analyzing data from the past 1000 years, with major emphasis on the period c. AD 1800 to the present. Five major locations/sea-ice data sets are being considered: i) The sea-ice record from Iceland; ii) The sea-ice record from the Barents Sea area; iii) The record of historical ice conditions around Newfoundland and on the Grand Banks, and in the Gulf of St. Lawrence and the Scotian Shelf; iv) The Odden region of the central Greenland Sea; v) A climate and sea-ice record based on Moravian missionary accounts from Nain, Labrador. Two other components will investigate local knowledge of sea-ice and other climate changes, specifically in Iceland and Labrador/Nunatsiavut. Deliverables include: i) Development of a new 150-year central Greenland Sea ice-atmosphere dataset; ii) Analysis and modeling of the relationship between ice extent and production in the Central Greenland Sea and the occurrence of deep convection; iii) An interpretation of how Greenland Sea convection has varied over the past 150 years, together with implications of this for the development of ocean changes and marine climate in the Nordic Seas during this period; iv) A homogeneous and reliable long-term sea-ice record for Iceland; v) A synthesis of the sea-ice records with circulation data in order to gain insights into past, present and future natural climate variability of pan-

Study of North Alaskan Coastal Systems (SNACS)						
Award	Title	NSF	PI	Contact		
Number		Organization				
	Environmental	OPP/ARCSS	Ashjian, Carin	cashjian@whoi.edu		
	Variability, Bowhead		(Woods Hole)			
	Whale Distributions, and					
	Iñupiat Subsistence					
	Whaling—Whaling					
	Linkages and Resilience					
	of an Alaskan Coastal					
	System					
The coupli	ing between atmosphere, sea i	ice, ocean, bowhead	l whales, and subsist	ence whaling by the		
Native hui	nan populations is fundament	al to the physical-b	iological-human syst	tems of the Northern		
Alaska Co	ast. Whale migration routes a	nd habitat use are d	etermined by zoopla	nkton aggregations,		
which are	driven by oceanographic cond	litions, which deper	nd on the climatic re	gime. Successful hunting		
depends of	n interactions between environ	nmental and societa	l factors that vary ea	ch year and are driven by		
forces orig	inating outside the system. The	his complex suite of	f environment-whale	-human factors comprises		
a system t	hat is vulnerable both to globa	al climate and huma	n generated change.	This proposal seeks to		
identify ar	id understand the complex lin	kages, mechanisms	, and interactions wit	thin and between the		
atmospher	e, ocean, and human compone	ents of this system.	The response and res	silience of these		
componen	ts and the system as a whole t	o variable forcing b	y external environm	ental change will also be		
investigate	ed. The work is highly interdis	sciplinary and focus	es on the linked ocea	an-human systems of		
coastal Ala	aska, concentrating specificall	ly near Barrow, Ala	ska. Four distinct ye	t highly interrelated		
approache	s to understanding the system	are used: 1) Biolog	ical and physical oc	ean modeling to identify		
mechanism	ns of frontal and eddy formati	on and plankton ag	gregation, to describ	e the effects of		
environme	ental forcing from outside on t	he local ocean, and	to understand longer	r term, past and future		
variability	in outside forcing on whaling	g success, 2) High re	esolution field sampl	ing to demonstrate		
presence o	f physical features and associ	ated biological con-	centrations and to va	lidate modeling, 3)		
Assessmen	nt of the resilience and vulnera	ability of the subsis	tence hunting econor	my and culture in Barrow		
and 4) Ret	rospective analysis synthesizi	ng modeled ocean a	and climate condition	ns with available		
informatio	n on whale location, feeding,	and harvest success	to asses the resilien	ce and vulnerability of		
the whale-	ocean-human system to envir	onmental change. In	ntrinsic Merit: On th	e local scale, the results		
of the rese	arch will provide a greater un	derstanding of the f	actors influencing a	natural resource,		
demonstra	ting linkages between discove	ery and application	to policy issues of bo	owhead whale		
manageme	ent. The social structure and fa	abric of the Inupiat	communities are inti	mately linked to the		
whaling tr	adition and are particularly vu	Inerable to both en	vironmental change	and human-generated		
pressures.	On the broader scale, the rese	arch will address he	ow multiple physical	, biological, and human		
factors are	linked in a complex natural s	ystem that may be	critically affected by	environmental		
variability	. Biogeochemical and physica	l manifestations of	climate change in th	is region (e.g., ice		
reduction,	changes in marine mammal n	nigration and ecosy	stem structure) will h	nave consequences for		
local huma	an linkages to the Arctic ecosy	ystem by influencin	g hunting success, ea	ase of travel, and the		
relative im	portance of subsistence and c	ash economies and	are representative of	those of the broader		
Arctic with	h important impacts on global	carbon cycling. Al	l these topics are hig	hly relevant to the Study		
of Enviror	mental Arctic Change (SEAR	RCH) program. This	project is cutting-ed	lge in that it assimilates		
research of	f multiple disciplines from oc	eanography to socia	al science to address	questions that can only		
successful	ly be answered using this mul	ti-faceted, integrati	ve approach. Broad	er Impacts: The locally		
relevant sc	eience proposed for this project	et is of significant in	nterest to the Barrow	community and		
neighborir	ng villages, to policy makers a	t the IWC, NOAA,	and MMS, and to th	e broader public. The		
interdiscip	linary collaborative partnersh	ip between academ	ic researchers and sta	aff at a federal agency		
and at a re	gional wildlife management a	gency is an investn	ent in human and so	cial capital that enhances		

the broader research infrastructure. Climate variability and its effects on access to and mobility within the Arctic Ocean have broader impacts for global and local commerce and national security. The proposed high school internship program involves the participation of native people who are often underrepresented in the fields of science and technology. Broader involvement of high school students and teachers through the ARMADA program will communicate to the scientists of the next generation understanding of field research, of the Arctic Ocean ecosystem, and of the importance of climate variability to this ecosystem.