### The Effects of Cross-Polar Flights on Arctic Black Carbon and Climate

Mark Z. Jacobson, Stanford University

#### Black Carbon Webinar II: Arctic Black Carbon Science Activities

April 18, 2014

## Primary Contributors to Net Observed Global Warming



## Data vs. Modeled Temperature Anomaly

#### GISS: 2010-2013 minus 1951-1980





#### Model: 2013 minus 1850

AAir T (K) w-w/o AGHG+AAPPG+US (+1.0; 1:1.5; o:+0.81)



GISS: 2010-2013 minus 1900-1930

## Rerouting Aircraft Reroute flights >500 mi, >50 seats, and with both origin and destination airports below Arctic Circle.



Number of cross-polar flights 2004-2010

Jacobson et al. (2012)

#### Annual, Zonal Static Stability and Aviation Emissions in Tropopause-Relative Coordinates z<sub>TR</sub>(t)=z<sub>MS</sub>(t)+z<sub>THMean</sub>-z<sub>TH</sub>(t) (Whitt et al., 2011)



74% of emissions above Arctic Circle are in stratosphere
47% of emissions 40-90 N are in stratosphere
24% of global emissions are in strat (33% Jan, 13% Jul)
34% of global emissions in regions of high static stability

## **Rerouting Cross-Arctic Flights**





2006 Rerouting Inventory

#### Jacobson et al. (2012)

# Rerouting One Flight (Frankfurt to Anchorage)



#### Cooper et al. (2011)

### Subgrid Plume Model vs. LES



**Subgrid Plume Model** 

Naiman et al. (2010)

#### Large Eddy Simulation (LES) Contours of exhaust concentration



## GATOR-GCMOM Contrail Cloud Fraction Treating Subgrid Contrails



Contrails form primarily over mid latitudes and in the upper troposphere. Some form over North Pole (Jacobson et al., 2011)

## Global Modeled Temperature Change Due to Rerouting Arctic Flights



# Rerouting may reduce loss of Arctic ice and cool global temperatures on average at low cost relative to benefit

Jacobson et al. (2012)

## Summary of Rerouting

- Increases fuel use by 0.056%; distance by +0.026% Reduces fuel use in Arctic Circle by 83%
- Baseline cost of jet fuel worldwide: \$122 billion/yr Added costs due to rerouting: +\$99 mil/yr (68 fuel +31 operational)
- Estimated global warming cost to U.S. in 2025: \$271 billion/yr (severe weather, real estate, energy, water)
- Reduction global warming by rerouting 1.7-2% → Reduce costs to U.S. of \$4.7-5.4 billion/yr = 47-55 times world cost of rerouting.